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Abstract: Recent decades have celebrated a growing interest to wireless sensor networks (WSNs), both in theory
and applications. Organized to have a large number of nodes, the WSN allows for redundant measurements that
makes the distributed optimal estimation an adequate sensor fusion technique. The estimators developed for WSNs
should ensure the consensus in the network while respecting restrictions imposed by the battery life, real-time esti-
mation, and low computing burden. In this work, we develop the unbiased finite impulse response (UFIR) filtering
technique to operate under consensus on the estimates in the distributed WSN. Properly tuned on optimal horizons,
the distributed UFIR filter with consensus on estimates reduces the mean square error (MSE) as compared to the
centralized UFIR. It also demonstrates higher robustness against model errors while respecting the restrictions of
the WSN.

Key–Words: Optimal estimation, WSN, Robustness

1 Introduction
The interest to wireless sensor networks (WSN) has
grown in recent decades, especially in industrial ap-
plications [1, 2, 3]. A dramatic progress in the de-
velopment of WSN has become possible mostly due
to technological advances in smart sensors, which al-
low a more ubiquitous and large scale deployment of
WSN in many fields.

The large scale deployment of the WSN nodes al-
lows a desired quantity Q to be measured by a big
number of sensors. However, the measurement pro-
cess is provided in the presence of noise. Therefore,
optimal estimation is required along with adequate
sensor fusion techniques [4, 5, 6, 7]. None the less,
the restrictions of WSN caused by limited battery life
and required processing power put a stress on the de-
velopment of algorithms to ensure an efficient use of
these limited resources.

Distributed filtering has been introduced in order
to estimate Q in real time [8, 9] and improve bat-
tery life by eliminating wireless transmissions of the
nodes over long distances to a centralized estimator.
However, an important issue in distributed filtering
remains: it needs to ensure the consensus in the net-
work, which the nodes achieve by averaging the esti-
mates, measurements, or information matrices [10].

Nowadays, Kalman filter (KF) remains most pop-

ular among other sensor fusion techniques [11] due
to its optimality and low computational cost. In [12],
the author has proposed a KF structure that requires
each node to locally aggregate its measurement and
covariance matrix with those of its neighbors and, in a
posterior step, compute the estimate using a KF with
a consensus term. Based on this approach, other al-
gorithms were introduced, for example [13, 14], using
the Kalman-like approach.

Over the years, many distributed techniques have
been developed based on the Kalman filter [15, 16,
17, 18], the optimality nature of KF does not always
ensure the robustness, scalability, and fault tolerance
required by the WSNs [19, 20]. It has been proven
that better robustness can be achieved using filter op-
erating on finite data horizons [21, 22, 23, 24]. Under
such an assumption, a moving average estimator has
been designed in [25] for weak observability. A con-
sensus finite-horizon H∞ approach was developed in
[26] under missing measurements. In [27], an unbi-
ased finite impulse response (UFIR) filter was devel-
oped for consensus on measurements. Although this
filter has shown an ability to be more robust and ad-
equate than the KF for WSN, it was designed under
the condition that all sensors measure the same state
at the same time.

In this work, we make attempts to design a dis-
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tributed UFIR filter with consensus on estimates. Un-
like its predecessor [27], the new filter will be de-
signed to not require the nodes to measure the same
state, and having the same variance. That predeter-
mines better performance of the solution that we will
show based on simulations of the WSN.

2 Model and problem formulation
Let us suppose that a physical quantity Q(t) in ques-
tion is represented for the WSN conditions in discrete-
time state-space with the following linear K-state
space equations

xk = Akxk−1 +Bkwk , (1)

yk = Hkxk + vk , (2)

where xk ∈ RK is the state vector in the discrete time

index k, yk = [ y
(1)
k

T
. . . y

(n)
k

T
]T ∈ Rnp, p 6 K

is the measurement vector in which y(i)k = H
(i)
k xk +

v
(i)
k ∈ Rp represents each sensor’s individual mea-

surement in an ad hoc network of n inclusive neigh-

bors j. Here, Hk = [H
(1)
k

T
. . . H

(n)
k

T
]T ∈ Rnp×K ,

H
(i)
k ∈ Rp×K , Ak ∈ RK×K , and Bk are known ma-

trices of proper dimensions. The noise vectors, wk
and vk = [ v

(1)
k

T
. . . v

(n)
k

T
]T ∈ Rnp, are supposed to

be zero mean Gaussian with the covariances Qk and

Rk = diag[R
(1)
k

T
. . . R

(n)
k

T
]T ∈ Rnp×np, respec-

tively. In what follows, x̂k|r is the estimate of xk at
k via measurements up to and including at time-index
k.

The problem can now be discussed as follows.
Given individual estimates provided in each WSN
node separately, how can we find the consensus for the
estimates? With this aim, one KF was used in [12] to
obtain optimum estimates for an individual sensor and
another one to provide optimum estimation using the
individual estimates of the inclusive neighbors. Fol-
lowing this approach, let us form the estimate as

x̂ick = K̃m,kYm,k + λ
n∑
j

(x̂
(j)
k − x̂

(i)
k ) , (3)

which implies that errors produced by centralized es-
timation are corrected via the difference between the
ith estimate and each individual estimate provided by
its neighbors. The estimation is provided in such a

way that
n∑
j=1

(x̂
(j)
k − x̂

(i)
k ) = 0 means a perfect con-

sensus between all the inclusive neighbors of the ith
node. Otherwise, errors in the centralized estimation

will be compensated using the difference between the
individual estimates and λ, which is chosen to mini-
mize the root mean squared error (RMSE),

λ = arg min
λ

{trP (λ)} , (4)

where P = E{(x − x̂ic)(x − x̂ic)T } is the relevant
error covariance. The implementation of (3) requires
that each node performs a centralized estimation that
will result in high computational burden for a smart
sensor. However, in a practical scenario, the computa-
tional load can be greatly weakened. In the following
section, we will discuss a more suitable version of (3)
for a smart sensor.

3 Distributed UFIR Filtering

A simplification of (3) can be obtained in the batch
form if to express it as follows,

x̂ick = K̃m,kYm,k (5a)

+λ
n∑
j

(K̄
(j)
m,kY

(j)
m,k − K̄

(i)
m,kY

(i)
m,k)

= K̃m,kYm,kλK̃
(j)
m,kYm,k (5b)

−nλK̄(i)
m,kY

(i)
m,k

= (K̃m,k + λK̃
(j)
m,k)Ym,k (5c)

−nλK̄(i)
m,kY

(i)
m,k

= ˙̃Km,kYm,k − nλK̄
(i)
m,kY

(i)
m,k , (5d)

where K̃(j)
m,k = [K̃

(i)
m . . . K̃

(i)
k . . . K̃

(n)
m . . . K̃

(n)
k ] and

˙̃Km,k = [ ˙̃K
(i)
m . . . ˙̃K

(i)
k . . . ˙̃K

(n)
m . . . ˙̃K

(n)
k ]. In or-

der to determine ˙̃Km,k, the unbiasedness condition
E{x̂ick } = E{xk} must be satisfied. Following [28],

we thus find the filter gain ˙̃Km,k as

˙̃Km,k = (I + nλ)(CTm,kCm,k)
−1
CTm,k (6a)

= (I + nλ)G−1k CTm,k (6b)

and notice that (3) has another equivalent form of

x̂ick = (I + nλ) ˜̄Km,kYm,k − nλK̄
(i)
m,kY

(i)
m,k , (7)

in which the filter gain ˜̄Km,k is computed by

˜̄Km,k = G−1k CTm,k , (8a)

= (CTm,kCm,k)
−1
CTm,k (8b)
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and the extended observation vector Ym,k and matrix
Cm,k are given by

Ym,k =
[
yTm yTm+1 . . . yTk

]T
, (9)

Cm,k =


Hm(Fm+1

k )−1

Hm+1(F
m+2
k )−1

...
Hk−1A

−1
k

Hk

 , (10)

where the product of system matrices is assigned as

F rk =


AkAk−1...Ar, r < k + 1

I r = k + 1
0 r > k + 1

. (11)

For the individual estimates, K̄(i)
m,k is given by the

product

K̄
(i)
m,k = G

(i)
k C

(i)T

m,k , (12)

where the generalized noise power gain (GNPG) ma-
trix G(i)

k [29] is provided by

G
(i)
k = K̄

(i)
m,kK̄

(i)T

m,k = (C
(i)T

m,kC
(i)
m,k)

−1 . (13)

As can be seen, all information required to cal-

culate ˜̄Km,k and K̄
(i)T

m,k is provided by the K-states
space model. If for a certain application we have
H

(i)
k = H

(j)
k , ∀j 6= i, then the transition matrix

should be preloaded in the sensors, so only measured
data will be required from the nodes. On the other
hand, if sensors measure different states, the nodes
should transmit such information to neighbors.

3.1 Iterative form

For a large number of nodes, estimate (7) will require
a heavy computational load for a smart sensor. In or-
der to reduce this burden, an iterative form of (7) using
recursions can be found if derive the algorithm for a
sum of a centralized filter and an individual filter as

x̂ick = (I + nλk)x̂
c
k − nλkx̂

(i)
k . (14)

The iterative forms for x̂ck and x̂(i)k can be derived
following [28, 27]. First, represent the centralized fil-
ter as

Gl = [HT
l Hl + (AlGl−1A

T
l )−1]−1 , (15)

x̂cl = Alx̂
c
l−1 , (16)

x̂cl = x̂c
−
l +GlH

T
l (yl −Hlx̂

c−
l ) (17)

and do the same for the individual estimates as

G
(i)
l = [H

(i)T

l H
(i)
l + (AlG

(i)
l−1A

T
l )−1]−1 , (18)

x̂
(i)−

l = Alx̂
(i)
l−1 , (19)

x̂
(i)
l = x̂

(i)−

l +G
(i)
l H

(i)T

l (y
(i)
l −H

(i)
l x̂

(i)−

l ) .(20)

The initial values Gl−1 and x̂l−1 are computed as

Gs = (CTm,sCm,s)
−1 , (21)

x̂cs = GsC
T
m,sYm,s , (22)

and for the individual filter as

G(i)
s = (C(i)T

m,s C
(i)
m,s)

−1 , (23)

x̂(i)s = G(i)
s C

(i)T

m,s Y
(i)
m,s . (24)

Now, the iterative UFIR algorithm can be listed as Al-
gorithm 1.

Algorithm 1: Iterative UFIR Filtering Algorithm
with Consensus on Estimates

Data: yk, N
Result: x̂k

1 begin
2 for k = N − 1 :∞ do
3 m = k −N + 1, s = m+K − 1;
4 Gs = (CTm,sCm,s)

−1;

5 G
(i)
s = (C

(i)T

m,s C
(i)
m,s)−1;

6 x̃cs = GsC
T
m,sYm,s;

7 x̃
(i)
s = G

(i)
s C

(i)T

m,s Y
(i)
m,s;

8 for l = s+ 1 : k do
9 Gl = [HT

l Hl + (AlGl−1A
T
l )−1]−1;

10 G
(i)
l =

[H
(i)T

l H
(i)
l + (AlG

(i)
l−1A

T
l )−1]−1;

11 x̃cl = Alx̃
c
l−1+GlH

T
l (yl−HlAlx̃

c
l−1);

12 x̃
(i)
l = Alx̃

(i)
l−1 +G

(i)
l H

(i)T

l (y
(i)
l −

H
(i)
l Alx̃

(i)
l−1);

13 end for
14 x̂ick = (I + nλ)x̃ck − nλx̃

(i)
k ;

15 end for
16 end

4 Application example

In this section, we apply Algorithm 1 to track a mov-
ing object on the ground basis trough redundant noisy
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measurements provided by the nodes of a WSN. It is
assumed that the measurements of all the nodes are
available for the entire trajectory of the object without
delay. The test network consist of four nodes at fixed
positions as shown in Fig. 1. Such configuration al-
lows us to examine the behavior of the proposed filter
for different number of neighbors, ranging from one
to three, as it is assumed that each node can only com-
municate its first order neighbors.

1

2

3 4

Figure 1: Simulated WSN with four nodes, which
track a mobile object over all time.

Each node of the WSN tracks an object traveling
along a circular, clockwise trajectory from its initial
position x0 = 10m, y0 = −10m. Fig. 2 shows such
trajectory whose dynamics are described by the tran-
sition matrix

A =

[
a b
−b a

]
,

where a = 0.9996, b = 0.03, B = I . At k = 350, an
object receives an unpredicted impact, which is mod-
eled by substituting a with a + δ in A during 350 ≤
k ≤ 370. The noise components of wk = [w1k w2k]

T

have the variance σ2w = 0.01m2 and the covariance
Q = diag[σ2w σ2w ].

It is assumed that each sensor is able to measure
only one of two states of (1) over all time. Sen-
sors 1 and 3 measure the x coordinate, H(1,3) =
[ 1 0 ], while sensors 2 and 4 observe the y coordi-
nate, H(2,4) = [ 0 1 ]. Matrix R(i)

k = E{v(i)k v
(i)T

k } =
(σ + φ)2 is described for σ = 5m and φ ∼ U [−1, 1].
The filter optimum horizon, Nopt = 88, was found at
a test stage.

4.1 Effect of λ on RMSE

To implement (7) optimally, λ should be chosen such
that the MSE is minimized for the consensus on es-
timates at each node. To this end, we assume λ is a
diagonal matrix, λ = diag[λ1 . . . λK ], where each el-
ement corresponds to a compensating factor for each
state of the system.

As can be seen in Fig. 3, a correct value of λ
ensures the minimum RMSE for the consensus filter.
This is more relevant to the first state of node 1 (Fig. 3
a)), where the RMSE of the consensus filter is smaller
than that of the centralized and individual filter. For

-40 -30 -20 -10 0 10 20 30 40

x,m

-40

-30

-20

-10

0

10

20

30

40

y,
m

Figure 2: Object with a circular trajectory on a ground
space starting with x0 = 10m and y0 = −10m at
k = 0. An external force affects the movement from
k = 350 to k = 370.

the rest of the estimated states of the nodes, the min-
imum value of RMSE corresponds to either the value
of the centralized filter or the individual filter, as an
example, for node 2 the minimum RMSE for the first
state corresponds to the individual filter and for the
second state, to the individual filter, as shown in Fig
3 a) and b) respectively. Regardless of which, an ap-
propriate value of λ will always yield the minimum
RMSE.

4.2 Estimation error

Once λ is chosen, we run a new instance to compute
the estimation error of both states for every node. Fig.
4 shows that, for the x coordinate of nodes 1 and 2
(Fig 4 a) and b) respectively), the consensus UFIR
filter has better robustness in the occurrence of un-
expected miss-model errors, as the estimator error is
smaller. The error of nodes 3 and 4 for the x coor-
dinate present a similar behavior. However, at some
points, the consensus filter produces more errors than
the centralized and the individual estimations. This
behavior is due to the early definition of λ, which we
assume to be diagonal and constant.
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Figure 3: RMSE for x and y coordinate for different values of λ. a),b) corresponds to the x and y coordinate of
node 1 respectively. c),d) corresponds to the x and y coordinate of node 2 respectively.
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Figure 4: Estimation error for x and y coordinate for different values of λ. a),b) corresponds to the x and y
coordinate of node 1 respectively. c),d) corresponds to the x and y coordinate of node 2 respectively.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Miguel Vazquez-Olguin, Yuriy S. Shmaliy, Oscar Ibarra-Manzano

E-ISSN: 2224-266X 35 Volume 17, 2018



5 Conclusion

The filter shows better robustness in the sense of the
estimation error than the centralized and individual
UFIR filters, and its iterative version is appropriate for
its implementation in a smart sensor also, depending
of the application, the transition matrix H(j) could be
preloaded on the sensors, so the nodes should only
transmit their measurements, which will have a posi-
tive impact on the battery life of the nodes.

A natural improvement for this filter will be to
compute the optimum value of λ for every time index
k as λk = arg min

λk

{trPk} , where Pk = E{(xk −

x̂k
ic)(xk − x̂kic)T }; this improvement is already be-

ing studied and will be presented in a near future, as
well as the implementation on a network with a larger
number of nodes.
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